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Abstract— Recent works on adaptive optics (AO) systems
have shown that the knowledge of static and dynamic character-
istics of the atmospheric turbulence can be exploited to improve
the performances of the AO control system. Then, motivated
by the importance of an effective control for compensating
the atmospheric turbulence effect and thus improving the
real resolution of ground-based telescopes, in this paper we
investigate the estimation of both the static (i.e. purely spatial)
and dynamic characteristics of the turbulence. According with
commonly accepted statistical models, spatial second order
statistics of the turbulence are characterized by two parameters,
namely the outer-scale and the Fried parameter: We propose
a data-based estimation procedure for these parameters. Then,
from a dynamical point of view, the turbulence is typically
assumed to be formed by a discrete set of layers moving over
the telescope aperture: We show how a Markov Random Field
(MRF) representation, based on the already computed spatial
parameters, allow us to estimate the number of layers and their
characteristics.

I. INTRODUCTION

It is well known that the achievable resolution of any

telescope theoretically depends on the telescope aperture

diameter d: Indeed, because of the diffraction effect, the

larger is d, the higher is the telescope theoretical resolution.

However, the real resolution of ground-based telescopes is

significantly reduced (with respect to the theoretical one) by

the presence of the atmospheric turbulence: The wavefront

signal from a star object to a ground-based telescope is

distorted along the light path proportionally to the length of

the optic path, and depending on the encountered refraction

index, which, due to the dynamic evolution of the atmo-

spheric turbulence, may change quite fast both spatially and

temporally. Then, the resolution reduction is caused by the

fact that flat wavefronts before entering in the atmosphere,

arrives corrugated to the ground. The phase delay of beams

arriving on the telescope pupil is also called turbulent phase.

The aim of the adaptive optics (AO) system [1], is that of

compensating the atmospheric turbulence effect (i.e. reduc-

ing, and possibly suppressing, the phase delays). To make

this possible, the AO control unit receives measurements

of the current turbulent phase by a wavefront sensor and
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commands a set of deformable mirrors (i.e. actuators) to

adapt their shape so as to compensate for the current value

of the phase delays. The control is commonly delayed of two

sample periods, that is the time needed for image acquisition

and phase measurement [2], [3].

Because of this delay, a number of Kalman filter based

methods have been proposed to improve the control per-

formances [2], [3], [4], [5], [6]. As shown in [6], actually

the control performances can be improved if some (even

rough) information about the turbulent phase characteristics

is available. Then, the aim of this paper, is that of providing

some estimates of the parameters characterizing the turbu-

lence statistical model.

The atmospheric turbulence is commonly assumed to

be statistically homogeneous and isotropic. In particular,

it has been proved, [7], that its statistics follow a normal

distribution. Furthermore, from a dynamic point of view, the

turbulence is typically described as a set of layers moving

with constant velocities and at different altitudes over the

telescope lens. The total effect of these layers is usually

computed as a linear combination of the values of the single

layers.

In this paper we describe a procedure to estimate the

parameters characterizing both spatially and dynamically the

atmospheric turbulence: In Section III, we first compute the

turbulent phase sample covariances, which in the following

are used by a simple randomized algorithm to estimate the

parameters characterizing the turbulent phase spatial statis-

tics, e.g. the outer-scale, L0, and the Fried parameter, r0 (see

[8]). Then, in Section IV, exploiting these estimated values,

we compute a “spatially whitening” filter associated to a

Markov Random Field (MRF) model of the turbulent phase.

Finally, we propose a procedure to estimate the turbulence

dynamical characteristics (e.g. energies and velocities of the

layers) by means of the spatio-temporal correlations of the

“innovation” process resulting from the application of the

computed filter on the turbulent phase. This last step is a

modified version of the algorithm already proposed in [5].

We conclude in Section V with showing the results of

some simulations.

II. TURBULENCE PHYSICAL MODEL

Let u and v be two unit vectors indicating two orthogonal

spatial directions, as in Fig. 1, and let φ(u, v, t) be the

value of the turbulent phase on the point (u, v) at time

t on the telescope aperture plane, where u and v are the

coordinates of the point along u and v. Without loss of

generality, we assume that the origin of the coordinate system

induced by u and v be in correspondence with the center
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of the telescope. The turbulent phase is assumed to be

zero-mean stationary and spatially homogeneous, hence the

covariance between two values of the turbulence, φ(u, v, t)
and φ(u′, v′, t), depends only on the distance, r, between the

two points: Cφ(r) = E[φ(u, v, t)φ(u′, v′, t)],∀(u, v, u′, v′),
such that r =

√

(u − u′)2 + (v − v′)2.

(a) (b) (c)

Fig. 1. (a) Coordinates on the telescope image domain. (b) Two points,
(u, v) and (u′, v′), separated by a distance r on the telescope aperture
plane. (c) Discrete domain L.

Astronomers usually describe the spatial statistical char-

acteristics of the turbulent phase φ by means of the structure

function, which measures the averaged difference between

the phase at two points, (u, v) and (u′, v′), of the wavefront

separated by a distance r on the aperture plane (Fig. 1),

Dφ(r) =
〈

|φ(u, v, t) − φ(u′, v′, t)|2
〉

.

The structure function Dφ is related to the covariance func-

tion Cφ(r) as:

Dφ(r) = 2
(

σ2
φ − Cφ(r)

)

, (1)

where σ2
φ is the phase variance.

According to the Von Karman theory, the phase structure

function evaluated at distance r is the following (see [9]):

Dφ(r) =

(

L0

r0

)5/3

c

[

Γ(5/6)

21/6
−
(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

]

,

(2)

where K·(·) is the MacDonald function (modified Bessel

function of the third type), Γ is the Gamma function, and

the constant c is:

c =
21/6Γ(11/6)

π8/3

[

24

5
Γ(6/5)

]5/6

.

From the relation between the structure function and the

covariance (1), the spatial covariance of the phase between

two points at distance r results

Cφ(r) =

(

L0

r0

)5/3
c

2

(

2πr

L0

)5/6

K5/6

(

2πr

L0

)

. (3)

Furthermore, the turbulent phase is supposed to be normally

distributed [7], hence the second order statistics are sufficient

to completely describe its statistical properties.

In order to describe its temporal characteristics, the tur-

bulence is generally modeled as the superposition of a finite

number l of layers. The ith layer models the atmosphere

from an altitude of hi−1 to hi meters, where hl ≥ · · · ≥
hi ≥ hi−1 ≥ · · · ≥ h0 = 0. Let ψi(u, v, t) be the value of

the ith layer at point (u, v) at time t. Then the total turbulent

phase at (u, v) and at time t along the Zenith direction

is φ(u, v, t) =
∑l

i=1 γiψi(u, v, t) , where γi are suitable

coefficients associated to the layer energies. Without loss of

generality we assume that
∑l

i=1 γ
2
i = 1.

The layers are assumed to be stationary and characterized

by similar spatial statistics, i.e. the covariance between two

points at distance r of the i-th turbulence layer can be written

as Cψi
(r) = Cφ(r). Furthermore, the layers are assumed to

be independent, hence: E[ψi(u, v, t)ψj(u
′, v′, t′)] = 0 , i 6=

j.
A commonly agreed assumption considers that each layer

translates in front of the telescope pupil with constant

velocity vi (Taylor approximation [1]), thus

ψi(u, v, t+ kTs) = ψi(u− vi,ukTs, v − vi,vkTs, t) , (4)

i = 1, . . . , l, where vi = vi,uu + vi,vv, and kTs is a delay

multiple of the sampling period Ts. The velocity vectors are

assumed to be different for different layers, i.e. vi 6= vj if

i 6= j.
In real applications only a finite number of sensors is

available. These are usually distributed on a grid, thus the

turbulent phase is measured only on a discrete domain L,

which is that of Fig. 1(c), i.e. a sensor is placed at each

node of the grid. Then, measurements are taken using a

Shack-Hartmann device (which introduces also some noise

[1]), and projected on a set of spatial bases (which in this

paper we assume to be the Zernike polynomials, as typically

chosen by astronomers) both for having a compact turbulence

representation and some de-noising. Finally, we call y(t)
the vector containing the measured phases at time t on the

telescope aperture domain L.

We refer to [1] for a detailed description of adaptive optics

systems.

III. ESTIMATION OF THE SPATIAL PARAMETERS

As described in the previous section, the turbulent phase

is assumed to be zero-mean and normally distributed. Then

its spatial statistical description is characterized by two

parameters, {L0, r0}, as shown by (3). The aim of these

section is that of estimating these parameters from a set

of phase measurements {y(1), . . . , y(T )}, with T ≥ 1. To

achieve this task, we will also assume to have some a priori

information about the parameter values: We assume to know

a (possibly large) range of values which includes L0, i.e.

we assume to know {Lmin, Lmax} such that Lmin ≤ L0 ≤
Lmax. Instead, the only restriction imposed on r0 is to be

physically possible, i.e. r0 > 0. Actually, these assumptions

are quite realistic in practical applications.

Since the relation between the values of the turbulence and

{L0, r0} is statistically expressed by the structure function,

then the estimation procedure is divided in two steps: First,

computing the structure function estimates {D̂(di)}i=1:N on

a set of spatial distances {di}i=1:N from the measurements

{y(1), . . . , y(T )}. Then, estimating {L̂0, r̂0} from {D̂(di)}
and (2).

Notice that (1) provides us with a simple way to com-

pute estimates of the structure function, i.e. computing the
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sample covariances and then obtaining the structure function

estimates through (1).

Since φ is assumed to be normally distributed, station-

ary and asymptotically uncorrelated (the wind velocity is

assumed to be different from zero and Cφ(r) vanishes as

r becomes large) then it is also ergodic. Then, the ergodicity

ensures us that the covariance sample estimates (and thus

also the structure function estimates, {D̂(di)}i=1:N ) will

converge to their true values as T becomes large [10].

As a matter of fact, the convergence results to be quite

slow for common choices of the parameter values and

in standard Very Large Telescope (VLT) settings. Fig. 2

compares the true structure function values with the estimates

obtained from perfectly measured data (no noise) and noisy

data. The structure function estimates are computed using

T = 1000 turbulent phase samples (sample frequency fs =
1 Hz). The results are obtained setting the parameters to

the values of case (A) in Section V. It is quite apparent

that the values of estimates computed without noise are

almost converged, while those computed from noisy data

would need more samples to get to the same convergence

results. Nevertheless, in Section V we will show that the

results obtained using only 1000 samples are sufficient to

make the procedure described in the next Section effective.

As a consequence of the above considerations, results shown

in Section V should get even better using more samples.
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Fig. 2. In solid line the theoretical structure function, with L0 = 50m and
r0 = 0.4m, as a function of space distance. In dashed line the structure
function values estimated from noise-free samples. In dashed-dotted line the
structure function values estimated from noisy SH measurements.

In Section V we will also consider the boundary case

T = 1, basing the estimation on a purely spatial meaning

procedure: In this case the consistency of the estimator, as

the domain dimension goes to infinity, can be proved as in

[11].

The aim of the second step is computing the estimates

of the spatial parameters of the turbulence, {L̂0, r̂0}, from

{D̂(di)}i=1:N . Unfortunately, as shown in (2), the relation

between {D̂(di)}i=1:N and {L0, r0} is nonlinear, hence in

general we cannot compute {L̂0, r̂0} in closed form.

A convenient idea would be that of using a maximum like-

lihood estimator, however in this specific case its complexity

would be quite high. Then, our objective is that of designing

an alternative, possibly faster, estimation procedure.

We propose to compute {L̂0, r̂0} as

{L̂0, r̂0} = arg min
L̃0,r̃0





N̄
∑

i=1

Ti

(

D̂(di)

Dφ,L̃0,r̃0
(di)

− 1

)2


 (5)

where N̄ ≤ N , Ti is the number of samples used to

compute D̂(di) (the estimation is derived by a spatio-

temporal meaning, hence Ti is different for different dis)

and Dφ,L̃0,r̃0
(di) is the value at distance di of the structure

function introducing {L̃0, r̃0} in (2) instead of {L0, r0}
(e.g. Dφ(di) = Dφ,L0,r0(di)). In the following, the function

minimized in (5) will be also referred to as a cost function,

and its value for L̃0, r̃0 will be indicated as c(L̃0, r̃0).

In the following we will try to give some intuition on

the terms inside of the sum in (5). Consider the ith term:

D̂(di) has been computed as the mean of Ti variables ωit. If

we assume that the underground process is characterized by

Dφ,L̃0,r̃0
(·), then ωit = (wit)

2 and wit ∼ N (0, Dφ,L̃0,r̃0
(di)),

t = 1 . . . Ti. Thus
ωi

t

D
φ,L̃0,r̃0

(di)
∼ χ2

1. Furthermore if {wit}t
are independent, then from the central limit theorem:

1√
2Ti

Ti
∑

t=1

(

ωit
Dφ,L̃0,r̃0

(di)
− 1

)

∼ N (0, 1) , (6)

for large Ni. Rearranging the terms in (6) and writing D̂(di)
as the mean of ωit we obtain

D̂(di) −Dφ,L̃0,r̃0
(di)

√

2/Ti Dφ,L̃0,r̃0
(di)

∼ N (0, 1) ,

thus

D̂(di) ∼ N (Dφ,L̃0,r̃0
(di),

2

Ti
D2
φ,L̃0,r̃0

(di)) . (7)

Comparing (5) with (7) it is quite apparent that in (5) we are

summing local log-likelihood functions (properly scaled).

Of course, actually {wit}t are not independent. However,

the central limit theorem can be formulated also for depen-

dent variables, with a slight different expression [12]. Then,

actually the cost function in (5) is a quickly computable

approximation of the sum of the local log-likelihoods.

The minimization of the cost function in (5) can be

computed for instance with standard gradient methods or

with Markov Chain Monte Carlo (MCMC) methods. While

the first occasionally end on local minima, the latter often

are computationally quite expensive.

In this paper we use a simple randomized algorithm to

estimate the location of the minimum. Notice that, given the

value of L0 the cost function in (5) is linear in r0. Thus

known the value of L0, the optimal r0 can be computed in
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closed form as solution of a standard least squares problem1.

For this reason we drop “r0” from the notation of the cost

function, i.e. we indicate with c(L̃0) the value of the cost

function at (L̃0, r̃0), where hereafter r̃0 is assumed to be

computed by least squares. Then the optimization algorithm

consists of the following two steps:

1) Initialization: Compute an equally spaced set of samples

{L1, . . . , Ln} in [Lmin, Lmax] and let l be the distance

between two consecutive samples. Compute the values,

{c(L1), . . . , c(Ln)}, of the cost function corresponding

to {L1, . . . , Ln}. Define two new sets of variables

{p(1), . . . , p(n)} and {Lmax(1), . . . , Lmax(n)}, which

are initialized to p(i) = exp(−c(Li)/4) and Lmax(i) =
Li, i = 1, . . . , n. Construct a probability distribution

π(·) on the interval [Lmin, Lmax] as follows:

π(L) =

∑n
i=1 p(i)1(L− Li − l/2)1(Li + l/2 − L)

l
∑n
j=1 p(j)

(8)

2) Iteration: Sample a new value L̄ of the outer scale

from π. Let i be the index of the closest {Lj} to L̃. If

exp(−c(L̃)/4) > p(i) then we update p(i) and Lmax(i):
p(i) = exp(−c(L̃)/4), Lmax(i) = L̃.

When the number of iterations of 2) becomes large and

D̂(di) = Dφ(di) (which occurs only asymptotically in

T ), then L̂0 = Lmax(̄i) associated to ī = arg max(p(i))
approaches L0 (and consequently the Fried parameter asso-

ciated to L̂0 approaches r0).

Even if simple, the algorithm allow us to quickly find

a sufficiently good approximation of {L0, r0}, as shown in

Section V.

IV. DETECTION OF LAYERS: SPEED AND ENERGY

The aim of this section is the estimation of the turbu-

lence parameters (l, γ1, . . . , γl, v1,u, . . . , vl,u, v1,v, . . . , vl,v),
and the procedure is a slight modification of that presented

in [5]. For simplicity of exposition, in this Section we will

assume to use a perfect sensor, i.e. it provides measurements

of the turbulent phase without superimposed noise.

First, let us consider the spatio-temporal correlation,

cψ,i(u− ū, v − v̄, k̄) = E[ψi(u, v, t+ k̄Ts)ψi(ū, v̄, t)] ,

as a function of u and v (we consider ū, v̄ and k̄ as fixed to

constant values). By the Taylor assumption, (4), the layers

translate over the telescope aperture with constant velocities,

thus cψ,i(u − ū, v − v̄, k̄) has a peak in correspondence of

u = ū+ vi,uk̄Ts, v = v̄ + vi,v k̄Ts.
Since actually the available spatio-temporal correlations

are those of φ, cφ(u − ū, v − v̄, k̄) = E[φ(u, v, t +

k̄Ts)φ(ū, v̄, t)], and cφ(u, v, k) =
∑l

i=1 γ
2
i cψ,i(u, v, k),

∀(u, v, k), then the intuitive idea is that of searching for

peaks in cφ(u − ū, v − v̄, k̄), k = 1, . . . , T̄ , which should

correspond to translating layers.

1Actually we compute r0 as the solution of a weighted least squares
problem. This to allow us the possibility of assigning, in computing r0,

less importance to the values of D̂(di) with large di, which are estimated
using a low number of samples and thus are not so reliable.

However, the covariance (3) vanishes not so quickly, hence

the peak founded in cψ,i(vi,uk̄Ts, vi,v k̄Ts, k̄) is not so well

marked in cφ(vi,uk̄Ts, vi,v k̄Ts, k̄): In fact, due to noise, finite

number of samples used in the estimation of covariances

and the combination of elements, {cψ,i(·)}, associated to

different layers, the peaks may be wrongly detected or not

founded at all in cφ(·).
To reduce the effect of these unavoidable bad factors, we

modify the procedure described above, but maintaining the

idea of looking at spatio-temporal correlations. In particular,

we take advantage of a MRF spatial representation of the

turbulent phase: The goal is that of using this representation

to compute a sort of “spatially whitening filter”. Once

obtained this filter, we use it to compute a spatially “almost

white” process e. Then, exploiting the same considerations

as above,

c(u, v, k̄) = E[e(u+ ū, v + v̄, t+ k̄Ts)e(ū, v̄, t)]

has peaks in locations corresponding to the translating layers.

However, thanks to the “almost whiteness” of e, the peaks

are much more apparent on c(·) than on cφ(·).
In accordance with the physical model of the turbulence of

Section II, we model the turbulent phase φ as a homogeneous

and isotropic MRF with circular neighborhood N(·),
N(ū, v̄) =

{

(u, v) ∈ L | 0 < |u− ū, v − v̄| ≤ d̄
}

,

where d̄ is a suitable distance, and with |(u, v)| we indicate

the modulus (Euclidian length) of the 2D vector (u, v).
Then, as shown in [13], φ(ū, v̄, t), the value of the MRF

on the generic point (ū, v̄) at time t, can be expressed as

the best linear prediction of φ(ū, v̄, t) given the values of

its neighbors N(ū, v̄) at time t plus an “innovation” process

e(ū, v̄, t). According with the normal distribution of φ, the

best (spatial) linear prediction operator Ê[·] corresponds to

the expectation operator E[·], that is

φ(ū, v̄, t) =
∑

(u,v)∈N(ū,v̄)

a|(ū−u,v̄−v)|φ(u, v, t) + e(ū, v̄, t) ,

(9)

where {ai} are the coefficients which yield the best (spatial)

linear prediction of φ(ū, v̄, t) given the values of its neigh-

bors. Furthermore,

E[e(ū, v̄, t)e(u, v, t)] =

{

σ
2
e (ū, v̄) = (u, v)

−a|(ū−u,v̄−v)|σ
2
e (u, v) ∈ N(ū, v̄)

0 otherwise.
(10)

The terms “spatial innovation” and “spatially almost white”

for e are motivated by (10).

Assuming to know the covariance values in (3), the

coefficients {ai} can be computed as those of the usual

best linear predictor [14]. However, in this application the

exact covariance values are not available. Instead, we can

approximate them introducing the estimated spatial parame-

ters {L̂0, r̂0} in (3). The derived coefficients {âi} will only

be an approximation of the true ones, nevertheless (9) can

be rewritten as follows:

φ(ū, v̄, t) =
∑

(u,v)∈N(ū,v̄)

â|(ū−u,v̄−v)|φ(u, v, t)+eL̂0,r̂0
(ū, v̄, t)
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where eL̂0,r̂0
depends on the estimated parameters L̂0, r̂0.

Typically, eL̂0,r̂0
does not satisfy exactly the requirements to

be a “spatial innovation” process for φ, i.e. (10) does not

hold for eL̂0,r̂0
. However, if the estimates L̂0, r̂0 are good

enough, eL̂0,r̂0
approximatively satisfy (10) and results to be

useful for the detection of moving layers.

Since the above considerations made for φ and cφ(·) can

be repeated for e and c(·), then they approximatively hold

also for eL̂0,r̂0
and cL̂0,r̂0

(·), where

cL̂0,r̂0
(u, v, k) = E[eL̂0,r̂0

(u+ū, v+v̄, t+kTs)eL̂0,r̂0
(ū, v̄, t)].

Hence, the idea of the layer detection algorithm is that of

associating peaks in cL̂0,r̂0
(·) to moving layers.

If a peak in cL̂0,r̂0
(u, v, k̄) corresponds to a real layer, then

even cL̂0,r̂0
(uk/k̄, vk/k̄, k) for k < k̄ should assume quite

large vales. Thus, to reduce further the influence of noise,

we integrate cL̂0,r̂0
(·) over k, that is:

cp
L̂0,r̂0

(u, v, k̄) =
1

k̄ − 1

k̄−1
∑

k=1

cL̂0,r̂0
(uk/k̄, vk/k̄, k) ,

for k̄ > 1.

Finally, let us consider the ith layer, characterized by the

velocity vector (vi,u, vi,v), and assume to have collected

estimations ĉL̂0,r̂0
(u, v, k) of cL̂0,r̂0

(u, v, k) for k = 1, . . . , k̄
and (u, v) ∈ Lc, where Lc is a finite spatial domain such

that L ⊂ Lc. Since (vi,u, vi,v) 6= 0, its associated peak

in ĉL̂0,r̂0
(·) starts from the origin (where it is at k = 0),

and gets further as k becomes larger: At time kTs the

peak is in cL̂0,r̂0
(vi,uk, vi,vk, k), and |(vi,uk1, vi,vk1)| <

|(vi,uk2, vi,vk2)| when k1 < k2. Hence, ∀i there exists an

integer ki such that (vi,uki, vi,vki) ∈ Lc and (vi,u(ki +
1), vi,v(ki + 1)) /∈ Lc. Then, if k̄ is large enough, all the

peaks corresponding to the real layers are out of Lc.

The algorithm first compute from samples the estimates

ĉp
L̂0,r̂0

(·) of cp
L̂0,r̂0

(·). Then, it iteratively searches for new

layers starting from k = k̄ to k = 1. The goal is that of

detecting layers when they get in Lc: Specifically, at k = ki
for the ith layer.

As a consequence of the above considerations, a new layer

is detected at step k if:

1) cL̂0,r̂0
(u, v, k) corresponds to a large peak and

cp
L̂0,r̂0

(u, v, k) is large.

2) cL̂0,r̂0
(u, v, k) is not close to already detected layers

(e.g. disjoint neighborhoods).

3) (u, v) ∈ Lc and, for k < k̄, (u(k+1)/k, v(k+1)/k) /∈
Lc.

Even if restrictive, 3) is motivated by the fact that

cp
L̂0,r̂0

(·, ·, k+1) contains less noise than cp
L̂0,r̂0

(·, ·, k): Thus,

if 1) and 2) are satisfied by cL̂0,r̂0
(u, v, k) and not by

cL̂0,r̂0
(u(k + 1)/k, v(k + 1)/k, k + 1), then the large value

in cL̂0,r̂0
(u, v, k) is probably caused by noise.

See [5] for a detailed description of the previous version

of the algorithm described in this Section and its application

to turbulent phase prediction.

V. SIMULATIONS

We assume to be in VLT-like conditions, e.g. d = 8 meter

and ns = 40 and we investigate the results of the estimation

of turbulence characteristics (L0, r0 and layers characteris-

tics) with the following choices for the parameters:

(A) L0 = 50m, r0 = 0.4m, σ2
m = 0.6rad2, three layers

with the following characteristics: v1 = 7u m/s, v2 =
−16u m/s, v3 = 30u m/s, h1 = 0 Km, h2 = 2 Km,

h3 = 8 Km, γ2
1 = 0.50, γ2

1 = 0.30, γ2
1 = 0.20.

(B) L0 = 22m, r0 = 0.2m, σ2
m = 0.6rad2 three layers

with the following characteristics: v1 = 5u m/s, v2 =
9u m/s, v3 = 24u m/s, h1 = 0 Km, h2 = 2 Km,

h3 = 8 Km, γ2
1 = 0.55, γ2

1 = 0.35, γ2
1 = 0.10.

First, we use the procedure described in Section III to

estimate the spatial parameters, L0 and r0, from T turbulence

samples, where T can assume two values: T = {1, 1000}.

To reduce the temporal correlation of the samples, these are

sampled at a frequency of 1 Hz (i.e. 1 sample per second).

We assume to have a very rough a priori information about

L0: Lmin = 1 m, Lmax = 200 m.

The estimated structure functions for the simulations

with parameters (A) are shown in Fig. 3, while the

estimated parameters in both the considered cases are:

(A) T = 1: L̂0 = 8.6m, r̂0 = 0.23m.

T = 1000: L̂0 = 15.65m, r̂0 = 0.25m.

(B) T = 1: L̂0 = 17.2m, r̂0 = 0.19m.

T = 1000: L̂0 = 14.6m, r̂0 = 0.16m.

As shown in Fig. 3, the optimization algorithm provides

values {L̂0, r̂0} of the parameters which allow the theoretical

structure function Dφ,L̂0,r̂0
(·) fit very well the sampled

structure function. However, due to the influence of noise,

the values of the sample structure functions are not so close

to the real ones. Consequently, {L̂0, r̂0} are not so close to

their true values.

This would suggest us to use a larger number of samples,

T , in the estimation of D̂(·). However, we will see in the

following that {L̂0, r̂0} (estimated using T = 1000 samples)

are sufficiently good to allow the layer estimation procedure

of Section IV work properly.

The estimation of the layer characteristics (i.e. velocities

and energies) is done using T̄ = 1000 samples at a sampling

frequency of 10 Hz (i.e. with this settings a layer moving at

20 m/s translates of a quarter of the telescope diameter per

sample period). The simulations are done with both the two

turbulence settings defined in (A) and (B), and the MRF

models are computed exploiting the L̂0 and r̂0 computed

previously (using T = 1000 samples).

The results of the layer estimation are reported in Table I

for the (A) settings, and Table II for (B): vi,u, vi,v and γi
corresponds to the true values of the parameters, v̂i,u, v̂i,v
and γ̂i are the estimated ones.

Even if using approximated values of {L0, r0}, the layer

characteristics estimation algorithm still performs well: In

all of the examples the number of layers has been correctly
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Fig. 3. In dashed line the theoretical structure function, with L0 = 50m
and r0 = 0.4m, as a function of space distance. In solid line the structure
function estimated from samples. In bold dashed-dotted line the structure

function reconstructed using the estimated parameters {L̂0, r̂0}. Structure

function and {L̂0, r̂0} are estimated using: (a) T = 1 sample, (b) T =
1000 samples.

estimated, i.e. l̂ = l, and the values of the estimated

parameters are quite close to the true ones.

VI. CONCLUSIONS

In this paper we have presented a procedure for the

estimation of the parameter characterizing the turbulent

phase spatial statistics and for the detection of atmospheric

turbulence layers. First, we have proposed a method which

exploits the structure function statistical characterization of

the turbulent phase to estimate the outer-scale and the Fried

parameter from the sample phase covariances.

Then, exploiting a MRF representation of the turbulent

phase we have estimated the spatio-temporal correlations

of the “spatial innovation”. We have proposed a procedure

to properly analyzing these spatio-temporal correlations and

extracting the useful information about the turbulent phase

TABLE I

DETECTION OF THE LAYERS.

1st layer 2nd layer 3rd layer

vi,u [m/s] 7.00 −16.00 30.00
v̂i,u [m/s] 7.05 −16.11 30.00
vi,v [m/s] 0 0 0
v̂i,v [m/s] 0 0 0
γ2

i 0.50 0.30 0.20
γ̂2

i 0.54 0.26 0.20

TABLE II

DETECTION OF THE LAYERS.

1st layer 2nd layer 3rd layer

vi,u [m/s] 5.00 9.00 24.00
v̂i,u [m/s] 5.00 9.06 24.17
vi,v [m/s] 0 0 0
v̂i,v [m/s] 0 0 0
γ2

i 0.55 0.35 0.10
γ̂2

i 0.48 0.37 0.15

structure, i.e. the number of layers and their characterizing

parameters.

As shown in [6] and [5], the results obtained in this paper

can be exploited to improve the performances of the overall

AO control system.
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